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Quantum state sharing (QSS) is the process by which a quantum state can be securely distributed
among multiple recipients such that no individual can access it on their own but a large enough
subset of the group can fully recreate it. In this report, the protocols for sharing a coherent secret
state among five parties are proposed, such that any three of them can reconstruct the state,
while the other two cannot. The level of entanglement that this (3,5)-threshold scheme requires
to guarantee security is analysed, and an example physical set-up for one of the reconstruction
protocols is presented.

I. INTRODUCTION

Quantum state sharing (QSS) is the process by which a quantum state can be securely distributed among multiple
recipients such that no individual can access it on their own but a large enough subset of the group can fully recreate
it [1]. A (k,n)-threshold scheme involves combining the secret state and resource states to form n different shares,
such that a minimum of k of them must be recombined to reconstruct the state to some agreed-upon level of accuracy.

Previously, it has been shown that a (2,3)-threshold scheme can securely share an arbitrary coherent state by using
a resource state which exhibits EPR steering [2]. In this report, it will be outlined how this scheme can be extended
to securely share a coherent state in a (3,5)-threshold scheme by using two, two-mode, squeezed vacuum resource
states. In the interest of keeping the analysis simple, transmission loss or quantum noise will not be considered.

Demonstrating that the next largest QSS scheme has a secure and feasible set of protocols provides a strong
indication that much larger quantum state sharing schemes are achievable. These would enable larger computational
networks and quantum communication systems to develop.

Secure QSS protocols have the potential to be extremely useful in the future in conjunction with quantum computers.
For instance, QSS could allow quantum computers to carry out ’blind computing’ [3]. Once a QSS protocol has split a
secret quantum state into separate encrypted shares, these shares could be processed by different quantum computers
separately. This guarantees that no single computer could access the encoded information. Then, once the computers
had processed the shares, the outcome of the computation could be only accessed when the shares were recombined.
Blind computing would thus allow users to have their confidential data processed by unverified quantum computers
with full confidence. Another significant use case is secure communication, even in a situation where the security
of any individual communication channel cannot be guaranteed. For instance, in a (3,5)-scheme, the principles of
quantum mechanics guarantee that even if two communication channels (and thus two shares of the quantum state)
were somehow compromised, the state would still be completely inaccessible to an eavesdropper.

In section II, it is outlined how the dealer protocol takes a secret state and the two resource states and mixes them
into five different shares. Then, in section III, the optimal way of reconstructing the secret state given any three of
the five shares is explored. After that, in section IV, the level of squeezing needed to entangle the resource states
to reach the threshold of security is analysed. Finally, the findings are summarised and potential areas for future
research related to this topic are considered.

II. THE DEALER PROTOCOL

The dealer protocol for the proposed (3,5)-threshold scheme is shown in Figure 1.

Before the dealer protocol, the scheme begins with an arbitrary coherent Gaussian secret state and two Gaussian
resource states. A Gaussian state has a Gaussian Wigner function and is characterised by its mean vector and
covariance matrix [4]. The covariance matrix for the secret state is simply the identity matrix since it is an unsqueezed,
Gaussian state.

Each resource state is a two-mode, squeezed, vacuum state. The modes of each resource state are positively
correlated in their X quadratures, and negatively correlated in their P quadratures. The mean vector of each resource
state is taken to be zero without loss of generality, as their mean vectors have no impact on entanglement. The
covariance matrix of a two-mode resource state with squeezing parameter r is given by
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VEPR =

cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

 . (1)

The dealer protocol consists of running these shares through a set of beamsplitters to produce five different shares.
These five shares are not pure states, but they can be written in shorthand notation (where the ket notation represents
both the X and P quadratures) as

|1⟩ = 1√
3
|ψ⟩+

√
2

3
|a1⟩, (2)

|2⟩ = 1√
3
|ψ⟩ − 1√

6
|a1⟩+

1√
2
|b1⟩, (3)

|3⟩ = 1√
3
|ψ⟩ − 1√

6
|a1⟩ −

1√
2
|b1⟩, (4)

|4⟩ = 1√
2
|a2⟩+

1√
2
|b2⟩, (5)

|5⟩ = 1√
2
|a2⟩ −

1√
2
|b2⟩. (6)
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FIG. 1. The dealer protocol for the proposed (3,5)-threshold scheme. The secret state and four modes of two resource states
are combined into five shares using beamsplitters.
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The matrix which describes the action of the dealer protocol on the quadratures of the 5 initial states is



X̂1

P̂1

X̂2

P̂2

X̂3

P̂3

X̂4

P̂4

X̂5

P̂5



=


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2

0 0 0

0 1√
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6
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



X̂ψ

P̂ψ

X̂a1

P̂a1

X̂a2

P̂a2

X̂b1

P̂b1

X̂b2

P̂b2



.

This dealer protocol is appropriate for two reasons. First, ψ is present in three shares, so whichever three shares
are chosen, there is always some contribution from the secret state. Secondly, whichever three shares are chosen,
there is always at least two components from the a resource state and two components from the b resource state,
meaning it is possible to combine the quadratures of the shares in proportions which will cancel out the resource mode
contributions as much as possible.

III. THE RECONSTRUCTION PROTOCOLS

For a QSS scheme to be secure, it must be ensured that the secret state can be reconstructed to a sufficient level
of fidelity. Setting aside the trivial reconstruction of the {1,2,3} case, perfectly reconstructing the secret state is only
possible in the limit of infinite squeezing and entanglement within the resource states. Therefore, we must consider
how well reconstructed we would like the secret state to be. How well a state is reconstructed is measured in terms of
fidelity. If fidelity equals 1, then the output state exactly resembles the initial state. A fidelity of 0 means the output
state does not resemble the initial state at all. The level of fidelity we are considering as the benchmark of security
is 2/3. If three shares are combined and a fidelity of 2/3 is reached, it is guaranteed that the collaborating parties
have more information about the secret state than anyone else - even if the other two parties collaborate [5]. This is
supported by the no-cloning theorem. Therefore, it is a suitable value of fidelity to require.

A reconstruction protocol describes the proportions in which the quadratures of the three shares should be combined
to maximally cancel out the resource modes and accurately reconstruct the secret state. The reconstruction protocol
will be different for each different combination of three shares since all of the shares are different.

Given that there are five shares, and we want to reconstruct the secret state with any three of them, the number of
possible three-share combinations is

(
5
3

)
= 10. However, many of the three-share combinations are extremely similar.

This is because shares two and three, and shares four and five differ only by a single phase difference in one of the
resource mode contributions. The three-share combinations which have either shares two and three swapped, or
shares four and five swapped will have very similar reconstruction protocols and the same entanglement requirements.
Therefore, we group similar three-share combinations together in our analysis as follows:

A B C D E
1,2,3 1,2,4 1,4,5 2,3,4 2,4,5

1,2,5 2,3,5 3,4,5
1,3,4
1,3,5

Rather than examining all 10 combinations, it is only necessary to analyse the first combination from each of these
groupings. This is because it is expected that all share combinations within the same group yield the same fidelity as
each other.

Because the X quadratures are positively correlated within modes from the same resource state and the P quadra-
tures are negatively correlated, the proportions in which the quadratures are combined during a reconstruction protocol
will be different. Therefore, a protocol which acts separately on each quadrature is required.
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There are three constraints which determine the proportions that the quadratures should be mixed in. Firstly, it
is desirable for the secret state not to be amplified or attenuated in the output; if the output state needed to be
attenuated or amplified afterwards to obtain the original state, this would add noise and affect our final fidelity[4].
Secondly, it is desirable that the quadratures of resource state a cancel maximally and thirdly it is desirable that the
quadratures of resource state b cancel maximally.

A. The {1,2,3} Protocol

The {1,2,3} reconstruction protocol is the trivial case. It is the only case where the X and P quadratures are
combined in are the same proportions, and in which entanglement between different modes is not leveraged. Shares
1, 2 and 3 are formed by running ψ and the a1 and the b1 resource modes through two beamsplitters. For the
reconstruction protocol, the shares can simply be run through the same apparatus backwards and the mixing can be
undone to perfectly reconstruct the secret state.

The shares are

|1⟩ = 1√
3
|ψ⟩+

√
2

3
|a1⟩, (7)

|2⟩ = 1√
3
|ψ⟩ − 1√

6
|a1⟩+

1√
2
|b1⟩, (8)

|3⟩ = 1√
3
|ψ⟩ − 1√

6
|a1⟩ −

1√
2
|b1⟩. (9)

Throughout this report, shares or quadratures will be mixed with proportions of α, β and γ, with α corresponding
to the lowest number share and γ corresponding to the highest one. To fulfil the constraints outlined previously,
it is required that α = β = γ = 1√

3
. Plugging this in confirms that the the secret state is fully recreated with no

contributions from the resource modes:

1√
3
|1⟩+ 1√

3
|2⟩+ 1√

3
|3⟩ = |ψ⟩. (10)

In matrix form, the reconstruction channel acting on the shares is 1√
3

1√
3

1√
3

1
2
3

 =

Output
 =

ψ . (11)

The blank spaces represent the other two output beams of the reconstruction channel. Since we only are interested
in one primary output beam, the other entries can be arbitrary. The only constraint is that the reconstruction
matrix satisfies the relevant uncertainty relations. A quantum channel matrix, T , satisfies the canonical commutation
relations when it satisfies the following positive semi-definite condition [4]:

iΩ− iTΩTT ≥ 0, (12)

where TT is the transpose of T and Ω is the simplectic matrix of the form

Ω =
⊕
n

(
0 1
−1 0

)
. (13)

The positive semi-definite condition M ≥ 0 is satisfied when the real number z∗Mz is positive or zero for every
non-zero complex column vector z, where z∗ is the complex conjugate transpose of z.



v

B. The {1,2,4} Protocol

The quadratures that need to be combined in this protocol are

X̂1 =
1√
3
X̂ψ +

√
2

3
X̂a1, (14)

X̂2 =
1√
3
X̂ψ − 1√

6
X̂a1 +

1√
2
X̂b1, (15)

X̂4 =
1√
2
X̂a2 +

1√
2
X̂b2, (16)

P̂1 =
1√
3
P̂ψ +

√
2

3
P̂a1, (17)

P̂2 =
1√
3
P̂ψ − 1√

6
P̂a1 +

1√
2
P̂b1, (18)

P̂4 =
1√
2
P̂a2 +

1√
2
P̂b2. (19)

By fulfilling the constraints outlined at the beginning of section III, it is found that the X and P quadratures must
be mixed in the following proportions:

X1 + (
√
3− 1)X2 + (1−

√
3)X4 = X̂ψ +

√
6−

√
2

2
(X̂a1 − X̂a2) +

√
6−

√
2

2
(X̂b1 − X̂b2), (20)

P1 + (
√
3− 1)P2 + (

√
3− 1)P4 = P̂ψ +

√
6−

√
2

2
(P̂a1 + P̂a2) +

√
6−

√
2

2
(P̂b1 + P̂b2). (21)

The modes within a resource state in the X quadratures are added in opposite proportions, and since they are
positively correlated, they maximally cancel. Similarly, the modes within a resource state in the P quadratures are
added in the same proportions, and since they are negatively correlated, they maximally cancel too. However, they
do not cancel out perfectly. The degree to which the resource mode contributions cancel depends on the strength
of entanglement between them. The stronger the entanglement between the modes in a resource state, the more
correlated their quadratures, the more completely they cancel and the better the fidelity of the output state.

In matrix form, the reconstruction channel acting on the share quadratures is


1 0

√
3− 1 0 1−

√
3 0

0 1 0
√
3− 1 0

√
3− 1





X̂1

P̂1

X̂2

P̂2

X̂4

P̂4


=



X̂Out

P̂Out


. (22)

C. The {1,4,5} Protocol

The quadratures that need to be combined in this protocol are

X̂1 =
1√
3
X̂ψ +

√
2

3
X̂a1, (23)

X̂4 =
1√
2
X̂a2 +

1√
2
X̂b2, (24)

X̂5 =
1√
2
X̂a2 −

1√
2
X̂b2, (25)
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P̂1 =
1√
3
P̂ψ +

√
2

3
P̂a1, (26)

P̂4 =
1√
2
P̂a2 +

1√
2
P̂b2, (27)

P̂5 =
1√
2
P̂a2 −

1√
2
P̂b2. (28)

It is found that the X and P quadratures must be mixed in the following proportions:

√
3X1 −X4 −X5 = X̂ψ +

√
2(X̂a1 − X̂a2), (29)

√
3P1 + P4 + P5 = P̂ψ +

√
2(P̂a1 + P̂a2). (30)

In matrix form, the reconstruction channel acting on the share quadratures is =



√
3 0 −1 0 −1 0

0
√
3 0 1 0 1





X̂1

P̂1

X̂4

P̂4

X̂5

P̂5


=



X̂Out

P̂Out


. (31)

D. The {2,3,4} Protocol

The quadratures that need to be combined in this protocol are

X̂2 =
1√
3
X̂ψ − 1√

6
X̂a1 +

1√
2
X̂b1, (32)

X̂3 =
1√
3
X̂ψ − 1√

6
X̂a1 −

1√
2
X̂b1, (33)

X̂4 =
1√
2
X̂a2 +

1√
2
X̂b2, (34)

P̂2 =
1√
3
P̂ψ − 1√

6
P̂a1 +

1√
2
P̂b1, (35)

P̂3 =
1√
3
P̂ψ − 1√

6
P̂a1 −

1√
2
P̂b1, (36)

P̂4 =
1√
2
P̂a2 +

1√
2
P̂b2. (37)

It is found that the X and P quadratures must be mixed in the following proportions:

√
3− 1

2
X2 +

√
3 + 1

2
X3 +X4 = X̂ψ +

1√
2
(X̂a2 − X̂a1) +

1√
2
(X̂b2 − X̂b1), (38)

√
3− 1

2
P2 +

√
3 + 1

2
P3 − P4 = P̂ψ − 1√

2
(P̂a1 + P̂a2)−

1√
2
(P̂b1 + P̂b2). (39)

In matrix form, the reconstruction channel acting on the share quadratures is:
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

√
3−1
2 0

√
3+1
2 0 1 0

0
√
3−1
2 0

√
3+1
2 0 −1





X̂2

P̂2

X̂3

P̂3

X̂4

P̂4


=



X̂Out

P̂Out


. (40)

E. The {2,4,5} Protocol

The quadratures that need to be combined in this protocol are

X̂2 =
1√
3
X̂ψ − 1√

6
X̂a1 +

1√
2
X̂b1, (41)

X̂4 =
1√
2
X̂a2 +

1√
2
X̂b2, (42)

X̂5 =
1√
2
X̂a2 −

1√
2
X̂b2, (43)

P̂2 =
1√
3
P̂ψ − 1√

6
P̂a1 +

1√
2
P̂b1, (44)

P̂4 =
1√
2
P̂a2 +

1√
2
P̂b2, (45)

P̂5 =
1√
2
P̂a2 −

1√
2
P̂b2. (46)

It is found that the X and P quadratures must be mixed in the following proportions:

√
3X2 +

1−
√
3

2
X4 +

1 +
√
3

2
X5 = X̂ψ +

1√
2
(X̂a2 − X̂a1) +

√
3

2
(X̂b2 − X̂b1), (47)

√
3P2 +

√
3− 1

2
P4 −

√
3 + 1

2
P5 = P̂ψ − 1√

2
(P̂a1 + P̂a2) +

√
3

2
(P̂b1 + P̂b2). (48)

In matrix form, the reconstruction channel acting on the share quadratures is:



√
3 0 1−

√
3

2 0 1+
√
3

2 0

0
√
3 0

√
3−1
2 0 −

√
3+1
2





X̂2

P̂2

X̂4

P̂4

X̂5

P̂5


=



X̂Out

P̂Out


. (49)
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IV. SECURITY ANALYSIS: CALCULATING FIDELITY

The security of this scheme is discussed in terms of the fidelity achieved in our output state. Fidelity is a measure
of how well the output state resembles the secret state. A fidelity of 1 corresponds to perfect reconstruction and a
fidelity of 0 corresponds to orthogonality between our output and secret state i.e. no resemblance. A QSS protocol
is considered to be secure when the secret state can be reconstructed with a fidelity of 2/3, as this ensures that the
collaborating majority has more information about the state than any other group could. The key to reaching this
fidelity is to entangle the resource states strongly enough. As demonstrated in section III, the output state is always
in the form of the secret state and then some contributions from the resource states. The resource state contributions
are always in such a manner as to maximally cancel, and the more entangled the modes within a resource state are,
the better this cancellation is.

The strength of the entanglement between resource modes is a consequence of the strength of the squeezing employed
in their creation prior to the dealer protocol. As a consequence, there is a minimum amount of squeezing needed in
their creation to meet the 2/3 fidelity threshold. The amount of squeezing required to make the proposed scheme
secure is now examined.

A key thing to note is some three-share combinations reconstruct the secret state with different fidelities, for a
given level of squeezing. This is a consequence of every share being slightly different. For a fully robust QSS system,
it must be ensured that even the three-share combination which reconstructs the secret state with the worst fidelity
meets this 2/3 fidelity threshold. To ensure this, 5 example cases of three-share combinations are examined, and how
much squeezing is needed for the worst-fidelity combination to hit that 2/3 threshold is investigated. That amount
of squeezing is the minimum required for the system as a whole to be secure.

For two Gaussian states which have the same mean vector, the fidelity of the output state relative to the input
state is

F =
2√

det(Vin +Vout)
. (50)

In the proposed system, the input state and output state have the same mean. This is because the output state is
always the secret state combined with some resource state contributions, and the resource states have a mean of 0.
V is the covariance matrix which (along with the mean vector) characterises the Wigner function of the state.

The method of how to calculate V is shown explicitly in IVB. All other calculations of V are done in the same
way.

A. The {1,2,3} Protocol

This three-share combination is a special case as entanglement does not have to be leveraged at all to reconstruct
the secret state perfectly. Since this three-share combination gives a fidelity of 1 no matter the level of squeezing, it
can be ignored in the security analysis.

B. The {1,2,4} Protocol

To calculate Vout, it is necessary to start with a 10x10 matrix representing the covariance of all the quadratures of
all 5 initial modes, prior to dealing.

The covariance matrix for a coherent, Gaussian secret state is

Vcoherent =

(
1 0
0 1

)
. (51)

rA and rB are defined as the squeezing parameters used in the creation of resource states A and B. The covariance
matrix for resource states A and B, which show the relationships between X̂a1, P̂a1, X̂a2, P̂a2 and X̂b1, P̂b1, X̂b2, P̂b2
respectively, are given by

VsqueezedA =

cosh(2rA) 0 sinh(2rA) 0
0 cosh(2rA) 0 − sinh(2rA)

sinh(2rA) 0 cosh(2rA) 0
0 − sinh(2rA) 0 cosh(2rA)

 , (52)
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VsqueezedB =

cosh(2rB) 0 sinh(2rB) 0
0 cosh(2rB) 0 − sinh(2rB)

sinh(2rB) 0 cosh(2rB) 0
0 − sinh(2rB) 0 cosh(2rB)

 . (53)

If these matrices are combined into a 10x10 covariance matrix where entries correspond to X̂ψ, P̂ψ, X̂a1, P̂a1, X̂a2,

P̂a2, X̂b1, P̂b1, X̂b2, P̂b2, the initial covariance matrix can be written as

VInitial =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 cosh(2rA) 0 sinh(2rA) 0 0 0 0 0
0 0 0 cosh(2rA) 0 − sinh(2rA) 0 0 0 0
0 0 sinh(2rA) 0 cosh(2rA) 0 0 0 0 0
0 0 0 − sinh(2rA) 0 cosh(2rA) 0 0 0 0
0 0 0 0 0 0 cosh(2rB) 0 sinh(2rB) 0
0 0 0 0 0 0 0 cosh(2rB) 0 − sinh(2rB)
0 0 0 0 0 0 sinh(2rB) 0 cosh(2rB) 0
0 0 0 0 0 0 0 − sinh(2rB) 0 cosh(2rB)


.

(54)
After applying the dealer protocol, the covariance matrix has the form

VAfterDeal = TDealer · VInitial · TTDealer (55)

where

TDealer =



1√
3

0
√

2
3 0 0 0 0 0 0 0

0 1√
3

0
√

2
3 0 0 0 0 0 0

1√
3

0 − 1√
6

0 0 0 1√
2

0 0 0

0 1√
3

0 − 1√
6

0 0 0 1√
2

0 0
1√
3

0 − 1√
6

0 0 0 − 1√
2

0 0 0

0 1√
3

0 − 1√
6

0 0 0 − 1√
2

0 0

0 0 0 0 1√
2

0 0 0 1√
2

0

0 0 0 0 0 1√
2

0 0 0 1√
2

0 0 0 0 1√
2

0 0 0 − 1√
2

0

0 0 0 0 0 1√
2

0 0 0 − 1√
2



. (56)

The covariance matrix after applying the reconstruction channel is

VAfterChannel = TChannel · VAfterDeal · TTChannel (57)

where the channel matrix for 1,2,4 is

TChannel =



1 0
√
3− 1 0 0 0 1−

√
3 0 0 0

0 1 0
√
3− 1 0 0 0

√
3− 1 0 0


. (58)
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Because only a single output beam is important in the scheme, the fact that the bottom 8 rows of the channel
are left empty actually doesn’t affect the answer. Finally, to extract the 2x2 covariance matrix which describes the
relationship between X̂Out and P̂Out, the 2x2 block in the upper left corner of VAfterChannel is examined to find VOut.

Figure 2 shows how the fidelity of the output state depends on the amount of squeezing employed in the creation of
the resource states. The red line in the lower left corner shows the threshold for fidelity reaching 2/3. If it is assumed
that resource states A and B are squeezed in the same magnitude, the minimum amount of squeezing needed to reach
the 2/3 threshold is 0.301 dB (3 s.f).

FIG. 2. Fidelity as a function of the squeezing parameters of resource states A and B, rA and rB , for the {1,2,4} set-up. The
red line indicates the threshold where fidelity reaches 2/3. We arbitrarily choose x0 = p0 = 3 for the secret state mean for
plotting purposes.
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C. The {1,4,5} Protocol

If If it is assumed that resource states A and B are squeezed in the same magnitude, Figure 3 illustrates that the
minimum amount of squeezing needed to reach the 2/3 threshold is 6.02 dB (3 s.f).

It should be noted that the squeezing value rB is irrelevant to the fidelity. This is the case because the only
contributions from resource state B to shares 1, 4 and 5 are in the b2 mode. Therefore, the entanglement between
modes b1 and b2 is never leveraged, and hence the strength of the entanglement between them is irrelevant.

FIG. 3. Fidelity as a function of the squeezing parameters of resource states A and B, rA and rB , for the {1,4,5} set-up. The
red line indicates the threshold where fidelity reaches 2/3. We arbitrarily choose x0 = p0 = 3 for the secret state mean for
plotting purposes.
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D. The {2,3,4} Protocol

The plot of the value of fidelity depends on rA and rB for this three-share combination is shown in Figure 4.
If it is assumed that resource states A and B are squeezed in the same magnitude, Figure 4 illustrates that the

minimum amount of squeezing needed to reach the 2/3 threshold is 3.01 dB (3 s.f).

FIG. 4. Fidelity as a function of the squeezing parameters of resource states A and B, rA and rB , for the {2,3,4} set-up. The
red line indicates the threshold where fidelity reaches 2/3. We arbitrarily choose x0 = p0 = 3 for the secret state mean for
plotting purposes.
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E. The {2,4,5} Protocol

The plot of the value of fidelity depends on rA and rB for this three-share combination is shown in Figure 5.
If it is assumed that resource states A and B are squeezed in the same magnitude, Figure 5 illustrates that the

minimum amount of squeezing needed to reach the 2/3 threshold is 6.02 dB (3 s.f).

FIG. 5. Fidelity as a function of the squeezing parameters of resource states A and B, rA and rB , for the {2,4,5} set-up. The
red line indicates the threshold where fidelity reaches 2/3. We arbitrarily choose x0 = p0 = 3 for the secret state mean for
plotting purposes.
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F. Summary of Security Analysis

In summary, if the same strength of squeezing is used in the preparation of resource state A and resource state B,
the minimum amount of squeezing needed to reach a fidelity of 2/3 for each share combination is shown in Figure
6. For the proposal to be secure, it must be ensured that whichever three shares are chosen, the threshold of 2/3
fidelity is achievable. Consequently, the level of squeezing the proposed (3,5)-threshold scheme requires is the amount
required in the worst cases (namely {1,4,5} and {2,4,5}). This is the squeezing level of ≈ 6.02 dB.

FIG. 6. A summary of the squeezing requirements in the resource states for five representative combinations of shares for secure
QSS

V. EXAMPLE PHYSICAL SET-UP FOR {2,3,4} RECONSTRUCTION PROTOCOL

To bridge the gap between theory and practice, one considers how to physically carry out one of the reconstruction
protocols with a physical set-up of optical components. Let us consider the {2,3,4} reconstruction protocol. The
quadratures of the shares are

X̂2 =
1√
3
X̂ψ − 1√

6
X̂a1 +

1√
2
X̂b1, (59)

X̂3 =
1√
3
X̂ψ − 1√

6
X̂a1 −

1√
2
X̂b1, (60)

X̂4 =
1√
2
X̂a2 +

1√
2
X̂b2, (61)

P̂2 =
1√
3
P̂ψ − 1√

6
P̂a1 +

1√
2
P̂b1, (62)

P̂3 =
1√
3
P̂ψ − 1√

6
P̂a1 −

1√
2
P̂b1, (63)

P̂4 =
1√
2
P̂a2 +

1√
2
P̂b2. (64)

The reconstruction protocol found earlier is represented by the process:



√
3−1
2 0

√
3+1
2 0 1 0

0
√
3−1
2 0

√
3+1
2 0 −1





X̂2

P̂2

X̂3

P̂3

X̂4

P̂4


=



X̂Out

P̂Out


. (65)
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To implement this using optical components, the following strategy is proposed: first, use a pair of beamsplitters
followed by a squeezer to combine the shares in the proportions which will mix the X quadratures as desired. Then,
the two non-output beams and two feed-forward components are used to displace the P quadrature of the output
beam by the correct amount.

A diagram of the experimental set-up is shown in Figure 7. The transmissivity of the beamsplitters are τ1 and
τ2 respectively. The squeezing strength of the squeezer is β and the gain on the P quadratures in the feed-forward
process is G1 and G2 respectively.

FIG. 7. A diagram of the experimental set-up proposed for the reconstruction protocol of {2,3,4}

An expression for |output⟩ in terms of τ1, τ2, β, G1 and G2 is to be determined to calculate those constants and
match |output⟩ to the desired output. To do this, it is necessary to calculate |first⟩, |next⟩, |mid⟩, |bot⟩and |final⟩
as well.

Firstly, let us determine |first⟩, |next⟩, |mid⟩ and |bot⟩. Since they only have gone through beamsplitters, their X
and P quadratures are the same and they can be expressed in shorthand notation. They are found to be

|first⟩ =
√
1− τ1|3⟩+

√
τ1|4⟩, (66)

|bot⟩ = √
τ1|3⟩ −

√
1− τ1|4⟩, (67)

|next⟩ =
√
1− τ2|2⟩+

√
τ2|first⟩, (68)

|mid⟩ = √
τ2|2⟩ −

√
1− τ2|first⟩. (69)

Now, |final⟩ is calculated. The squeezer with squeezing parameter β will multiply the X quadrature by eβ and
multiply the P quadrature by e−β . Recall that the set-up aims to achieve the ideal proportions in the X quadrature
after the squeezer. Thus, the following expression for the X quadrature of |final⟩ is obtained:

X̂final = eβX̂next = eβ
(√

1− τ2X̂2 +
√
τ2X̂first

)
= eβ

(√
1− τ2X̂2 +

√
(1− τ1)τ2X̂3 +

√
τ1τ2X̂4

)
. (70)

The X quadratures need to be mixed in the following proportions:
√
3−1
2 ,

√
3+1
2 and 1.

Therefore, three equations must be satisfied:

eβ
√
1− τ2 =

√
3− 1

2
, (71)

eβ
√
(1− τ1)τ2 =

√
3 + 1

2
, (72)

eβ
√
τ1τ2 = 1. (73)
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Solving these gives:

τ1 =
8− 2

√
3

13
≈ 0.349, (74)

τ2 =
4 +

√
3

6
≈ 0.955, (75)

β =
ln(3)

2
≈ 0.549. (76)

Now that τ1, τ2 and β have been determined and the X quadratures have been combined in the correct proportions,
the feed-forward process is examined and G1 and G2 are determined. First, let us calculate P̂final. Then, an expression
for P̂output can be found in terms of P̂final, P̂mid, P̂bot, G1 and G2 and the unknowns can be calculated.

P̂final = e−βP̂next = e−β
(√

1− τ2P̂2 +
√
τ2P̂first

)
= e−β

(√
1− τ2P̂2 +

√
(1− τ1)τ2P̂3 +

√
τ1τ2P̂4

)
. (77)

From this, it follows that

P̂output = P̂final +G2P̂mid +G1P̂bot = P̂final +G2(
√
τ2P̂2 −

√
1− τ2P̂first) +G1(

√
τ1P̂3 −

√
1− τ1P̂4). (78)

Substituting the expressions for P̂first and P̂final gives

P̂output = e−β
(√

1− τ2P̂2 +
√
(1− τ1)τ2P̂3 +

√
τ1τ2P̂4

)
+G2

√
τ2P̂2

−G2

√
1− τ2(

√
1− τ1P̂3 +

√
τ1P̂4) +G1

√
τ1P̂3 −G1

√
1− τ1P̂4.

(79)

Collecting terms into shares:

P̂output = P̂2(e
−β√1− τ2 +G2

√
τ2)

+ P̂3(e
−β

√
(1− τ1)τ2 −G2

√
(1− τ1)(1− τ2) +G1

√
τ1)

+ P̂4(e
−β√τ1τ2 −G2

√
τ1(1− τ2)−G1

√
1− τ1).

(80)

The P quadratures must be combined in the following proportions:
√
3−1
2 ,

√
3+1
2 and −1.

Therefore, two more equations must be satisfied:

e−β
√
(1− τ1)τ2 −G2

√
(1− τ1)(1− τ2) +G1

√
τ1 =

√
3 + 1

2
, (81)

e−β
√
τ1τ2 −G2

√
τ1(1− τ2)−G1

√
1− τ1 = −1. (82)

Solving for G1 and G2 using the values for τ1, τ2 and β, it is determined that

G1 =

√
20 + 8

√
3

13
≈ 1.61, (83)

G2 =

√
44− 24

√
3

39
≈ 0.250. (84)

In summary, the above workings show that the proposed physical system would carry out the reconstruction protocol
for the {2,3,4} system, provided the calculated values are used for τ1, τ2, β, G1 and G2 are used.



xvii

VI. CONCLUSION

In this report, a (3,5)-threshold scheme for sharing Gaussian states was proposed. Starting with a simple dealer
protocol, reconstruction protocols were formulated for five different three-share combinations. Those five combinations
are representative of all 10 possible combinations, providing confidence that the conclusions are accurate in all cases.
The reconstruction protocols for these five cases were examined and the amount of squeezing required to guarantee
security was determined. It was established that a minimum of ≈ 6.02 dB of squeezing is required in the creation of
the two resource states that the scheme uses. 6.02 dB is an achievable amount with current technology, demonstrating
the practical feasibility of this protocol. This amount of squeezing ensures that the fidelity of the output state is a
minimum of 2/3, ensuring that the collaborating majority has more information about the original state than anyone
else.

In addition to this, an example physical set-up for the reconstruction protocol of shares {2,3,4} was found using
beamsplitters, a squeezer and feed-forward components. The specific values of transmissivity, squeezing and gain for
this set-up were also determined. Devising a relatively simple set-up which can carry out the protocol further supports
the feasibility of this scheme.

There are several ways in which research in this area could be developed. The first is to consider how channel noise
and transmission loss affect the effectiveness of this scheme. Another way is to model examples of physical set-ups for
the other reconstruction protocols that have been proposed, to ensure that there are practical ways to realise them
too. Lastly, research in this area could be developed by investigating how to securely share a non-Gaussian state.
This would make the proposed scheme more versatile and allow QSS to be used in greater number of situations.
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